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Abstract

Algorithms are presented for the tanh- and sech-methods, which lead to closed-form solutions of
nonlinear ordinary and partial differential equations (ODEs and PDESs). New algorithms are given to
find exact polynomial solutions of ODEs and PDEgerms of Jacobi’s elliptic functions.

For systems with parameters, the algorithms determine the conditions on the parameters so that
the dfferential equations admit polynomial solutions in tanh, sech, combinations thereof, Jacobi’s sn
or cnfunctions. Examples illustrate key steps of the algorithms.

The new algorithms are implemented\tathenatica. Thepackage PDESpecialSolutions.m can
be used to automatically compute new special solutions of nonlinear PDEs. Use of the package,
implementation issues, scope, limitations, and future extensions of the software are addressed.

A survey is givenof related algorithms and symbolic software to compute exact solutions of
nonlinear differential equations.
© 2004 Elsevier Ltd. All rights reserved.

Keywods: Exact solutions; Nonlinear PDEs; Tanh method; Symbolic software

* Corresponding address: Depaent of Mathematical and Comput&ciences, Colorado School of Mines,
Stratton Hall SH 217, Golden, CO 80401-1887, USA. Tel.: +1-303-273-3881; fax: +1-303-273-3875.
E-mail addresswhereman@mines.edu (W. Hereman).

0747-7171/%$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2003.09.004


http://www.elsevier.com/locate/jsc

670 D. Baldwin et al. / Journal of Symbolic Computation 37 (2004) 669-705

1. Introduction

The appearance of solitary wave solutions in nature is quite common. Bell-shaped
sech-solutions and kink shaped tanh-solutions model wave phenomena in fluids, plasmas,
elastic media, electrical circuits, optical fisectemical reactions, bio-genetics, etc. The
travelling wave solutions of the Korteweg—de Vries (KdV) and Boussinesq equations,
which describe water waves, are famous examples.

Apart from their physical relevance, the knowledge of closed-form solutions of
norlinear ordinary and partial differential equations (ODEs and PDESs) facilitates the
testing of numerical solvers, and aids in the stability analysis. Indeed, the exact solutions
given in this paper correspond to homoclinidadwteroclinic orbits in phase space, which
are the separatrices of stable and unstable regions.

Trawelling wave solutions of many nonkar ODEs and PDEs from soliton theory
(and beyond) can often be expressed as polynomials of the hyperbolic tangent and secant
functions. An explanation is given in, for exampldéereman ad Takaoka(1990. The
existence of solitary wave solutions of evolution equations is addresd€idiernassamy
and Olver(1993. The tanh-method provides a straightforward algorithm to compute such
particular solutions for a large class of nonlinear PDEs. Coridalfliet (1992 2004,
Malfliet and Heremaif1996 andDas and Sarmél999 for a multitude of references to
tanh-basedechniques and applications.

The tanh-method for, say, a single PDELIfX, t) works & follows: in a travelling
frame of reference& = c1x + cot + A, one transforms the PDiato an ODE in the new
independent variablé = tanhé&. Since the derivative of tanh is polynomial in tanh, i.e.,

T’ = 1— T2, all derivaives of T are polynomials off . Via a dain rule, the polynomial

PDE inu(x, t) is transformed into an ODE id (T ), which has polynomial coefficients in

T. One then seeks polynomial solutions of the ODE, thus generating a subset of the set of
all solutions.

Along the path, one encounters ODEs which are nonlinear, higher-order versions of the
ultraspherical differential equation,

1 —x3)Y"(X) — (20 + XY (X) + n(n + 2)y(x) = 0, (1)

with integern > 0 andux real, whose solutions are the Gegenbauer polynomials.1qg. (
includes the Legendre equatian = 1/2), satisfied by the Legendre polynomials, and the
ODEs for Chebeyshev polynomials of typgd = 0) and type ll(e = 1). Likewise, the
associated Legendre equation,

(1 —x22y"(x) — 2x(x? = DY (x) + [N(n + 1)(1 — x?) — m’]y(x) = 0, )

with m andn non-negative integers, appears inviioy the Sturm-Liouville problem for
the KdV with a sech-guare potential (selBrazin and Johnsqii989.

The appeal and success of the tanh-method lies in the fact that one circumvents
integration to get explicit solutions. Variants of the method appear in mathematical physics,
plasma physics, and fluid dynamics. For early references sedalfliet (1992, Yang
(1994 andDas and Sarmgl999. Recently, the tanh-methods have been applied to many
norlinear PDEs in multiple independent variables (Eaq 2002ab,c, 2003ab,c; Fan and
Hon, 2002 2003ab; Gao and Tian200Z Li and Liu, 2002 Yao and Lj 2002ab).



D. Baldwin et al. / Journal of Symbolic Computation 37 (2004) 669705 671

In this paper we present three flavors of tanh- and sech-methods as they apply to
nonlinear polynomial systems of ODEs and PDEs. Based on the strategy of the tanh-
method, we also present algorithms to compute polynomial solutions in terms of the Jacobi
sn and cndinctions. Applied to the KdV equation, the so-called cnoidal solutiarazin
and Johnsorl989 is obtained. For Duffing’s equatiohé&wden 1989, we recover known
sn and cn-solutions which model vibrations of a nonlinear spring. Sn- and cn-methods
are quite effective for symbolically solving nonlinear PDEs as showkuiret al.(20017),
Parkest al.(2002), Liu and Li (2002a submitted for publicatiop Fan and Zhan¢?002),
Fan(2003ab,c), Chenand Zhand2003a submitted for publicatiopandYan (2003.

We also pesent our packag@®DESpecialSolutions.m (Baldwin et al, 200]) in
Mathematica which implements the five methods. Without intervention by the user,
our software computes travelling wawolutions as polynomials in eithéF = tanhg,

S = seché&, conbinations thereof, CN= cn(&; m), or SN = sn(&; m) with & =
C1X+Coy+C3Z+- - -+Cpt+ A = Z?‘:o CjXj+A. The cefficients of the spatial coordinates

are the components of the wavevector; the time coefficient is the angular frequency of
the wave. The wave travels in the direction of the wavevector; its plane wavefront is
perpendicular to that wavevectat. is the constat phase. For systems of ODEs or PDEs
with constant parameters, the software automatically determines the conditions on the
parameters so that the equations might admit polynomial solutions in tanh, sech, both,
sn orcn.

Parkesand Duffy (1996 mertion the difficulty of using the tanh-method by hand for
anything but simple PDEs. Therefore, they automated to some degree the tanh-method
usingMathematicaTheir code ATFM carries out some (but not all) steps of the method.
Parkeset al. (1998 also considered solutions to (odd-order generalized KdV) equations
in even powers of seciThe mde ATFM does not cover solutions involving odd powers
of sech. RecentlyParkeset al. (2002 extended their methods to cover the Jacobi elliptic
functions.Abbott et al.(2002 produced the function &iesSn to partially automate the
elliptic function methodLi and Liu (2002 desgned theMaplepackage RATH to automate
the tanh-method. IrLiu and Li (20028 they announce theiMaple code AJFM for the
Jacobi elliptic function method. I8ection 8.2ve review tle cdes ATFM, RATH, AJFM,
and SeriesSn and compare theithvPDESpecialSolutions.m.

The paper is organized as follows: $ectons 2and3, we give the mm steps of the
algorithms for computing tanh- and sech-solutions of nonlinear polynomial PDEs. We
restrict ourselves to polynomial solutions in either tanh or sech. The Boussinesq equation
and Hirota—Satsuma system of coupled KdV dipures illustrate the steps. For referencesto
both equations see e fblowitz and Clarksor{1991). In Section 4we consider a broader
class of polynomial solutions involving both tanh and sech. The tanh—sech algorithm is
used to solve a system of PDEs dueg@ao and Tiar(2001). In Section 5we show how
modifying the chain rule allows us to find polynomial solutions in cn and sn. The KdV
equation is used to illustrate the steps.Section 6we give details of the algorithms to
compute the highest-degree of the polynomials, to analyze and solve nonlinear algebraic
systems with parameters, and to numerically and symbolically test solutions. The coupled
KdV equations illustrate the subtleties of these algorithmsSéttion 7we present
exact solutions for several nonlinear ODEs and PDEsSéttion 8we address other
perspectives and extensions of the algorithms, and review related software packages.
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We disaiss the results and draw some conclusionSegtion 9 The use of the package
PDESpecialSolutions.m is shown in tAppendix

2. Algorithm to compute tanh-solutions for nonlinear PDEs

In this section we outline the tanh-methollid]fliet and Hereman1996 for the
computation of closed-form tanh-solutions for nonlinear PDEs (and ODESs). Each of the
five main steps of our algorithm is illustrated for the Boussinesq equation. Detd&liep$
T2, T4 andT5 are postponed t8ection 6

Given is asystem of polynomial PDEs with constant coefficients,

AUKX), U'X), U X), ..., u®x),...,u™x) =0, (3)

where thedependent variable hasM componentsi;, the ndependent variabbe hasN
components, andu® (x) denotes the colldion of mixed derivative terms of ordéx:
Lower-case Greek letters will denote parameter8)n (

For notational sinplicity, in Section Awe will use depadent variables, v, w, etc. and
independent variables vy, z, andt.

Example. The classical Boussinesq equation,
Utt — Uxx+3UUxx+3U§ + aUxxxx =0, (4)

with real parametet, was proposed by Boussinesq to describe surface water waves whose
horizontal scale is much larger than the depth of the watklofvitz and Clarkson1991).
Variants of @) were recently solved blfan and Hor{20033.

While one ould apply the tanh-method directly td)( we recast it as a first-order
system in time to showhe method for a simple system of PDEs. So,

ul,X2 + u2,X1 = Oa

(5)
U2,x, + U1 x;, — 3UUy x; — Uy 35, =0,
wherex; = X, X2 = t, U1(X1, X2) = u(X, t), andua(X1, X2) = us(x, t). We use
Uik, = v, uj et OPTT R etc (6)
ikxi = /T > LPXiTXkSX = T Do v o o0
1 SXE‘ PXIXsxe 8xjp8xl£ax§

through out this paper.

Step T1 (Trandorm the PDE into a Nonlinear ODE). We seek solutions in the travelling
frame of reference,

N
%’:ZCJ'XJ'-FA, @)
j=1
wherecj and A are constant.
The tanh-method seeks polynomial solutions expressible in the hyperbolic tangent,
T = tanh&. Based on the identity codly — sint? & = 1 one computes
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tanH & = sectf £ = 1 — tanif &, )
tanH' &€ = —2tanht + 2tanif &, etc

Therefore, the first and, consequently, all higher-order derivatives are polynomiils in
SinceT’ = 1 — T2, repeatedly applying the chain rule,

de & dT de 5 Ce

— == — — =cj(1-T?»—, 9

axj  oxj d& dT i YaT ®
transforms the system of PDESs into a coupled system of nonlinear ODEs,

A(T,U(M), U'(M),U"(M),...,.u™(T) =0, (10)
with U(T) = u(x). Each component ofA is anonlinear ODE with polynomial coefficients
inT.
Example. Substituting

Uix; = Cj(1— THU/,

Uiz = CH(1—TAH[A—THUYT = cZ(1 - TH[-2TU/ + (1 - THU/],

Uigg = C(1—TH-2TA - THU/ + 1 - T3H2U/T

=c(1-TH[-21-3THU/ — 6T (1 - THU/ + (1 - TAH?U/"],

(11)

into (5), and cancelling commofi — T?2) factors, yields
coUg +c1U; =0,
c2Uj + U] — 31UV + acd[2(1 — 3THU; (12)
+6T(1-THU — 1-TH2U) =0,
whereU1(T) = u1(Xq, X2) andU2(T) = ua(X1, X2).

Step T2 (Determine the Degree of the Polynomial Solutions). Seeking polynomial solu-
tions of the form

Mi
Ui(T) =) a;T, (13)
j=0

we must determine the leading exponektsbefore theaj; can be computed. We assume
thatM; > 1 to avoid trivial solutions. SubstitutindJ; into (10), the coefficients of every
power of T in every equation must vanish. In pattiar, the highest degree terms must
vanish. Sincehe highestlegree terms depend only @ in (13), it suffices to substitute
Ui(T) = TM into the left-hand side of1(). In the resulting polynomial syste®(T),
equating every two possible highest exponents in every compéheives a linear system
for M;. Thatlinear system is then solved.

If one or more exponentd; remain undetermined, assign an integer value to theMiee
so that every equation ii() has at least two different terms with equal highest exponents.
Cary each the solution t&tep T3



674 D. Baldwin et al. / Journal of Symbolic Computation 37 (2004) 669-705

Example. For theBoussinesq system, substitutibg(T) = TM2 andUx(T) = TM2 into
(12), and equating the highest exponent3 dbr each equation, gives
Mip—1=Mz—-1, 2M; —1=M1 + 1 (14)
Then,M; = Mz = 2, and
Ui(T) = aro+anT +a2T?  Uz(T) = a0+ anT +a2T?. (15)

Step T3 (Derive the Algebraic System for the Coefficieats). To generate the system
for the unknown coefficients;; and wave parametecs, subditute (13) into (10) and set
the coefficients off' to zero. The resulting nonlineargabraic system for the unknowns

ajj is parameterized by thg, and the gternal parameters (in lower-case Greek letters) of
system B), if any.

Example. Continuing with the Boussinesq system, after substitutltf {nto (12), and
collecting the terms of like degree Th, we get (in eder of compexity)
az1C1 + a1¢2 = 0,
azC1 + a2C2 = 0,
ay161(3a12 + 2050%) =0,
a12C1 (a2 + 4ac?) =0, (16)
a11€1 — 3agpa1161 + 2aa11Cf + ap1c2 =0,
—3a2,c1 + 2a12¢1 — 6agpa12C1 + 16agaCs + 2apsCr = 0,
with unknownsazo, a11, a12, a0, a1, a2z, andparameters;, cz, anda.
Step T4 (Solve the Nonlinear Parameterized Algebraic System). The most difficult step

is solving the nonlinear al¢peaic system. To do so, we designed a customized, yet
powerful, nonlirear solver (se&ection 6.Zor details).

The nonlinear algebraic system is solved under the following assumptions:

(i) All parameters, 8, etc.,in (3) are stictly positive. Vanishing parameters may
change the exponent4 in Step T2 To compute solutions corresponding to negative
parameters, reverse the signs of theapaaters in the PDE. For example, replace
by —« in (4).

(i) The coefficients of the highest power tertgm,,i = 1,..., M) in (13) are all
nonzero (for consistency withtep T3.
(iii) All cj are nonzero (demanded by the physical nature of the solutions).

Example. Assumingcy, Cp, a12, @22, andw are nonzero, the solution of§) is

a0 = (C? — ¢3 + 8act)/(3c2), a1 =0, a12 = —4ac?, a7)
ago = arbitrary, ax1 =0, a2 = 4aC1Cy.

In this case, there are no conditions on the parametecs ando.

Step T5 (Build and Test the Solitary Wave Solutions). Substitute the solutions obtained
in Step T4into (13) and rererse Step T1to obtain the explicit solutions in the
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original variables. It is prudent to test the solutions by substituting them & 6r details
about testing seBection 6.3

Example. Inserting (L7) into (15), and replacingl’ = tanh(cix + cot + A), the cbsed
form solduion for (5) (or (4)) is

u(x, t) = ui(x, t) = (¢ — ¢ + 8ac})/(3c?) — 4ac? tantf(cix + Cot + A),
18
us(X,t) = — / U1t (X, t)dx = ago + 4aciCo tantf(c1X + ot + A), (18)

whereapg, c1, C2, « and A are arbitrarySteps TET5 must be repeated if one or more of
the external parameters (lowease Greeks) are set to zero.

3. Algorithm to compute sech-solutions for nonlinear PDEs

In this section we restrict ourselves to polynomial solutions3dfrg sech. Polynomial
solutions involving both sech and tanh are dealt witBéttion 4 Defails of the algorithms
for Steps S2S4andS5are given inSection 6

Using tanR & + seclf £ = 1, solttion (18) of (5) can be expressed as

ur(x, t) = (¢ — ¢ — 4ac})/(3cd) + dacisectf(cix + Cot 4 A),

(19)
Ua(X, t) = ago + 4aCiCy — daciCosectf (CiX + Cot + A).

Obviously, any even order solution in tanh can be written in even orders of sech. Some
PDEs however have polynomial solutions of odd-order in sech. For example, the modified
KdV equation @blowitz and Clarkson1997),

Ut + UUZUX + Uyxxx = O, (20)
has the slution

u(x, t) = +c1/6/asech(cix — cft + A), (21)
which cannot be found using the tanh-method.

Example. The five main steps of the sech-algorithm are illustrated with the
Hirota—Satsuma system of coupled KdV equatigxtsigwitz and Clarkson1991),

Ut — a(BUUy + Uxxx) + 2Bvvx = 0,

(22)
vt + 3Uvy + vxxx = 0,

with real parameters, 8. Sech-type solutions were reporteditereman(1991) andFan
and Hon(20032. Variants and generalizations d?3) were solved inChenand Zhang
(20033 andYan (2003.

Lettingus(x1, X2) = u(x, t) andua(x1, X2) = v(X, t), EqQ. 22) is then

Ugx, — a(BUils x; + U1 3x,) + 2BUzuz x, = 0,

(23)
U2,x, + 3U1l2 x; + U2 3x; = 0.
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Step S1 (Trandormthe PDE into a Nonlinear ODE). Adhering to the travelling frame of
reference ), and using tarht + sectf £ = 1,

secH & = —seché tanhé = —sechéy/1 — seclf &. (24)

SettingS = seché and repeatedly applying the chain rule,

de 0t dSde ——de
ox; ox;deds ) ¥ (25)

(3) is trangormed into a syem of nonlinear ODEs of the form

'S U9),U(S),..)+V1-SII(S U9, U (S),..)=0, (26)
where U(S) = u(x), and all components off" and IT are ODEs with polynomial
coefficients inS. If either I" or IT are identically0, then

A(S U(S),U(S),...) =0, (27)

where A is eitherI” or IT, whicheer is nonzero. For this to occur, the order of all terms
in any equation ing) must be eve orodd (as is the case i28)).

Any term in 3) for which the total number of derivatives is even contributes to the first
term in 26); while any term of odd order contributes to the second t&attion 4deals
with any case for which neithdr or IT is identicallyO.

Example. Substituting

Ui, xj = —Cj mUi’,
Ui x; % = Cj wSV1- S [S\/l - SZUi/]/
= ¢S (1 — 2A)U/ + S(1 — U/,
Uixixoq = —Cjoka SV — R[S — 28U + S(1 - SHU/'T

= —¢jkq SV1 — [(1 - 6SHU/ + 3S(1 — 289U’
+ 52(1 _ SZ)UiW],

(28)

into (23), and cancelling the commd®V/ 1 — S factors yields
cU] — 6acUsU; — acd[(1 — 6SH)U; + 3S(1 — 285U
+S2(1 - SHULT + 28¢1UzU5 = 0, (29)
coUy + 3c1U1U)S + SS[(1 — 6SHU)S 4 3S(1 — 2SHUS + S2(1 — SHU,'1 =0,

with Uy(T) = ui(X1, X2) andUz(T) = uz(X1, X2). Note hat 29) matches 27) with
A = II, sincel’ = 0.

Step S2 (Determine the Degree of the Polynomial Solutions). We seek polynomial solu-
tions of the form,
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M;

Ui(S) = Zaj S (30)
j=0

To deternine theM; exponents, substitute; (S) = SMi into the left-hand side ofx7) and
proceed as irstep T2 Contnue withStep S3or each solution ol;. If some of theM;
exponents are undetermined, try abitimate values for the fre®;. SeeSection 6.%for
more déails.

Example. For (23), substitutingU1(S) = SM1, Ua(S) = SM2 into (29) and guating the
highest exponents in the second equation yidlds+ My, — 1 = 1 4+ My, or M1 = 2.
The maximal exponents coming from the first equation &fle 2 1 (from theU1U; term),
M1 + 1 (from U;"), and M2 — 1 (from UoU,). Using M1 = 2, two cases emerge: (i) the
third exponent is less than the first two (equal) exponents, iy, 21 < 3, s0M2 = 1, or
(ii) all three exponents are equal, in which cdég = 2. For the cas#; = 2 andMy = 1,

U(S) = a10+ a11S + a2, V(S) = azo+ a1S, (31)
and, for the cas&l; = My = 2,
U(S) = a0+ annS+ aoS?, V(S) = a0+ a21S + a2~ (32)

Step S3 (Derive the Algebraic System for the Coefficients). Fdlow the strategy in
Step T3

Example. After substituting 81) into (29), cancelling common numerical factors, and
organizing the equations (accang to complexity) one obtains

ap1a21€1 = 0,

ay1c1(3a12 — ¢3) =0,

@dy2C1 (a2 — 2¢2) = 0,

ap1C1(a2 — 2¢2) = 0, (33)

ap1(3a1001 4 €5 + ¢2) =0,

6ara10211C1 — 2B820821C1 + @1 1€ — A12C2 = 0,

Saaflcl + 6orazpaoCy — ,Baglcl + 4ozalzci’ —ag2c = 0.
Similarly, after substitution of32) into (29), one gets

ap2C1 (212 — 4¢2) = 0,

ap1(3a1001 4 G5 + ¢2) =0,

C1(a12821 + 2811822 — 2821C3) = O,

c1(3car1a12 — Bapidpr — aayiCy) = 0,

c1(3aaZ, — pad, — 6aayac?) = 0,

3
6ara10811C1 — 2BaxpaiCy + aay1Cy — apiC = 0,

(34)

3a11821C1 + 6a10822C1 + 8822C3 + 282262 = O,
2 2 2
3oag;C1 + 6oagganoCi — fa51C1 — 2BaxdzaCy + 4aalgc§ —agc; =0.
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Step $4 (Solve the Notinear Parameterized Algebraic System). Similar strategy as in
Step T4

Example. Fore, 8, 1, C2, a12 andap all nonzero, the solution oB3@) is

ap = —(Ci + C2)/(3¢1), aj1 =0, ap = ZCf,
(35)
azo =0, a1 = :t\/(405C;‘_' —2(1+ 2a)c1C2)/B.
Fora, B, c1, C2, a12 andagz nonzero, the solution oB@) is
a10 = — (4¢3 + ¢2)/(3cy), a11=0, a1 = 4c%,
a0 = £ (4 + (14 20)cp)/ (cl,/eaﬂ) . au=0, (36)

ap = ZFZC% 6a/p.

Step S5 (Build and Test the Solitary Wave Solutions). Substitute the resulStefp S4
into (30) and reverseStep S1Test the shitions.

Example. The solitary wave solutions o28) are

u(x, t) = —(c3 + ¢2)/(3c1) + 2c2seckf(cix + Cot + A),

(37)
v(X,t) = j:\/[4ozc‘11 — 2(14 2a)cicp]/Bsechcix + cot + A),

and
u(x, t) = — (4¢3 + ¢2)/(3c1) + 4cfsectf(Cix + Cat + A),
v(X, 1) = £(4ec3 + (1+ 20)C2)/ (cl\/607ﬂ> (38)
T 2c2,/6a/ Bsectf(cix + Gt + A).

In both casesy, ¢y, o, B, andA are arbitrary. These solutions contain the solutions reported
in Hereman(1991).
Steps SES5must be repeated if any of the parameters3jrafe setd zero.

4. Algorithm for mixed tanh—sech solutionsfor PDEs

The five main steps of our algorithm to compute mixed tanh—sech solution3)farg
presented below. Here we seek particular solution8fwhenI" # 0 andIT # 0. On
could apply the method dection 3to (26) in ‘squared’ formI'%(S, U(S), U'(S),...) —
(1— S ITA(S,U(S), U (S),...) = 0. For arything but simple cases, the computations are
unwiddy. Alternatively, sincel = /1 — S, Eq. 26) mayadmit solutions of the form

M N A
Ui(S)=> Y &S T (39)

j=0k=0
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However, 89) can always be rearranged such that
Mi; ) Ni ) M; ) N; )
Ui(S)=> ajS+TY bjs=>"a;S+vV1-) by;sl. (40)
j=0 j=0 j=0 j=0

The polynomial solutions irs from Section 3are special cases of this broader class.
Remarkably, 27) where+/1 — S? is not explicitly present also admits solutions of the
form (40). SeeSection 7.6or an example.

Computing slutions of type 80) with the tanh—sech method is inefficient and costly, as
the following examp and tle examples irsectbns 7.5and7.6 show.

Example. Weillustrate this algorithm with the systen®éo and Tian2001):
Ui —uyx — 2v =0,
vt + 2uw = 0O, (41)
wt + 2uv = 0.

Step ST1 (Transform the PDE into a Nonlinear ODE). SaméSésp S1

Example. Use @5) to trandorm (41) into

(c1— C2)SY1— RUj — 2U, =0,
c2SV1— SUS — 2U1U3 =0, (42)
C2SV/1— U4 — 2U3U, =0

with Ui (S) = uj (X1, X2), i =1, 2, 3.

Step ST2 (Determine the Degree of the Polynomial Solutions). Seeking solutions of form
(40), we mustfirst determine the leadinyl; and N; exponents. Substitutinty; (S) =

ajo + aim; SM + V1 — S (bio + bin, SY) into the left-hand side of26), we get an ex-
pression of the form

P(S +v1-SQ(9), (43)

whereP andQ are polynomials irs.

Consider separately the possible balances of highest exponentsinaaitl Q;. Then
sdve the resulting linear system(s) for the unknowws and N;. Continue with each
solution inStep ST3

In contrast toStep S2we o longer assum#l; > 1, N; > 1. Even with someM; or
N; zero, non-constant solutior$ (S) often arise. In most examples, however, the sets
of balance equations fdv; and N; are too large or the corresponding linear systems
are under-determined (i.e., several leading exponents remain arbitrary). To circumvent the
problem, we set alM; = 2 and allN; = 1, restricting the solutions to (at most) quadratic
in SandT.

Example. For (42), we set allM; = 2, N; = 1, and continue with

Ui(S) = aio+ a1S+ ai2S* + V1 — S(bio + bi19), i=123. (44)
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Step ST3 (Derive the Algebraic System for the Coefficiersig and bjj). Substituting
(40) into (26) givesﬁ(S) +Vv1- 82(3(8), which mustvanish idetically. Hence, equate
to zero the coefficients of the power terms3igo thatP = 0 andQ = 0.

Example. After substitution of 44) into (42), the resulting nonlinear algebraic system for
the coefficientsy; andbjj contains 25 equations (not shown).

Step ST4 (Solve the Nonlinear Parameterized Algebraic System). In contr&tieip S4
weno longer assume thafy, andbjy; are nonzero (at the cost of generating some constant
solutions, vihich we discard later).

Example. For (41), there are 11 solutions. Three are trivial, leading to consfanEight
are nontrivial solutions giving the results below.

Step ST5 (Build and Test the Solitary Wave Solutions). Proceed &tép S5
Example. The solitary wave solutions o#() are
u(x,t) = £cotanhg,
v(X, 1) = F3C2(C1 — Co)sectf £, (45)
w(x, ) = —3ca(Cc1 — Co)seckf &,
which muld have been obtained with the tanh-metho&eétion 2
u(x, t) = £icoseché,
v(X, t) = £3ica(Cc1 — C2) tanhgsechg, (46)
w(x, 1) = Lca(cr — ) (1 — 2seck &),
reported inGao and Tiar{2007); and the two complex solutions
u(x, t) = £3ico(seché £ i tanhg),
v(X, t) = FCa(C1 — Cp)seché(seché £i tanhé), (47)
w(X, t) = —Fca(C1 — C2)seché (seché & i tanhg).

In all solutionsé = c1x + cot + A, with ¢1, ¢; and A arbitrary. The complex conjugates
of (47) are abo solutions.

5. Algorithmsused to compute sn and cn solutions for PDES
5.1. Computation of solutions involving Cn

In this section we give the main steps (labell@d1-CN5) of our agorithm used to
compute polynomial solutions of3) in terms of Jacobi’s elliptic cosine function (cn).
Modifications needed for solutions involving the sn function are given at the end of this
section. Details fo6teps CN2CN4 andCN5 are shown irSection 6

Example. Consider the IdV equation Ablowitz and Clarkson1991),
Ut + aUUy + Uxxx = 0, (48)
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with real constante. The KdV equation models, among other things, waves in shallow
water andon-acoustic waves in plasmas.

Step CN1 (Transform the PDE ito a Nonlinear ODE). Similar to the strategy$i and
T1, using Lawden 1989

SIP(E; M) =1—crf&m),  drf(§; m) = 1—m+ menf(€; m), (49)
and

el (§; m) = —sn(&; mydn(&; m), (50)

one has CN = —/(1— CN?)(1 —m+ mCN?) where CN = cn(&; m) is the Jacobi
elliptic cosine with argumergt and modulus < m < 1.
Repeatedly applying the chain rule
de 0€ dCN de > 5. de
—_— = = —Cjy/(1 = CN%)(1 — m+ mCN) ——
ax; _ ax; dé dCN Ve Y= mH+mEND Gen
system 8) is ransformed into a nonlinear ODE system. In addition to thethe agorithm
introducean as an extra parameter.

(51)

Example. Using (61) to trandorm (48) we have
(€3(1 — 2m+ 6MCN?) — ¢ — ac1U7)U;
+3c3CN(1 — 2m + 2mCNH)U; — (1 — CN?)(1 — m+ mCN?)U;” = 0. (52)

Step CN2 (Determine the Degree of the Polynomial Solutions). Follow the strategy in
Step T2

Example. For (48), substitutingU1(CN) = CNM1 into (52) and ejuating the highest
exponents gives + My = —1+ 2M;. Then, M1 = 2, and

U1(CN) = agg + a11CN + a12CN2. (53)
Step CN3 (Derive the Algebraic System for the Coefficieafs). Proceed as itep T3
Example. For (48), after substituting33) into (52), one finds

a11C1(@a12 — 2ma) = 0,
a12¢1 (@ag2 — 12mc) =0, (54)
ar1(eaipCy — C% + 2m(,f +cp) =0,

@aZ 1 + a12(20a10c1 — 16mcS — 8¢ + 2¢;) = 0.

Step CN4 (Solve the Nonlinear Parameterized Algebraic System). Solve the system asin
Step T4

Example. Forcy, ¢, m, o andajz nonzero, the solution ob@) is

ajo = [4c3(1—2m) — col/(ac1),  ann=0,  aiz=(12mcd)/a. (55)
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Step CN5 (Build and Test the Solitary Wave Solutions). Substitute the resultsStep
CN4into (53). ReversesStep CN1 Test the shutions.

Example. The cnoidal wave solution o#) is
u(x, t) = [4c3(1 — 2m) — czl/(ac) + (12mE)/(a)crP (X + Cot + A; m),  (56)

wherecy, ¢, @, A and modulusn are arbitrary. If any of the parameters B) @rezero,
Steps CN2CN5 should be repeated.

5.2. Computation of solutions involving Sn
To find solutions in terms of Jacobi’s sn function, one uses the identities,

cré(g; m) = 1—srP(g;m),  drf(§; m) = 1 — msri(&; m),

57
sr(§; m) = cn(§; mydn(g; m). 7)

Then, SN = /(1 — SN?)(1 — mSN?), where SN= sn(&; m) is the Jacobi elliptic sine
with argument and modulus < m < 1. The steps are identical to the cn case, except
one uses the chain rule

de EdSN de

ox ~ x; d& SN

de

Cj \/(1 — SN (1 — mSN?) TSN

(58)
Since 1) and 68) involve roots, as inSectons 3and 4 there is no reason to restrict
the olutions to polynomials in only cn or sn. Solutions involving both sn and cn (or
combinations with dn) are beyond the scope of this paper.

Finally, from the sn and cn solutions, sin, cos, sech, and tanh-solutions can be obtained
by taking the appropriate limits for the modulégsm — 0,and m — 1). Indeed,
sn&; 0) = sin(§), sn(&; 1) = tanh§), cn(é; 0) = cog¥%), cn(&; 1) = seché). No need to
compute solutions in dn explicitly since gffimé; 1/m) = dn(&; m).

6. Key algorithms

In this section we present in a uniform manner the details of steps two, four and five of
the algorithms irSectons 2-5.

6.1. Algorithm to compute the degree of the polynomials

Step M1 (Substitute the Leading-Order Ansatz). A tracking variable is attached to each
term in the original system of PDEs. L&t [i] denote the tracking variable of thia term
in (3).

The first step of the main algorithms leads to a system of parameterized ODESs in
U,U,U”,...,U™. TheseODEs match the form

L'(F,U(F),U(F),..)+vR(F)II(F,U(F),U'(F),...) =0, (59)
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Table 1
Values forR(F) in (59)
F R(F)
T 0
S 1- &2
CN (1 — CN2)(1 — m + mCN2)
SN (1— SN2)(1 — mSN?)

whereF is eitherT, S, CN, orSN, andR(F) is defined inTable 1 Sincethe highat degree
termonly depends o Mi | it suffices to substitute

Ui(F) — FM (60)
into (59).
Example. We use the coupled KdV equation&?) asour leading example:

Tr[l]Ut — GQTI[Q]UUX + ZﬁTr[s]UUX — OtTr[4]UXXX = O,

Tr[5]vt + 3Tr[6]uvy + Tr[7]uxxx = O. (61)
Step Slresuted in (29) with IT = 0. Subgituting (60) into (61), we get
(Tr[1]c2M1 — aTr[41SM3) =1 4 o Tr[4]3 M1 (M1 + 1)(My + 2)SMi+?
— 6aTr[2]cit M1 M1 4 28Tr[3]c; M SPM2~1 = 0, 62)

(Tr[5]c2M32 + Tr[71c3M3) SM2~1 — Tr[71c3 Mo (M2 + 1) (M, + 2)SM2HL
+3Tr[6]cMp SV M=t — o,
Step M2 (Collect Exponents and Prune Sub-domirBranches). The balance of highest
exponents must come from different terms ®).(For each equation\; and for each
tracking variable, collect the exponents &f remove duplicates, and non-maximal

exponents. For exampleMl; — 1 can be removed fron{M; + 1, M1 — 1} because
Mi+1> M —1.

Example. Cdllecting the exponents &in (62), we get the unpruned list:

Aq | Ap
Tr[1]: {M] — 1} Tr[5]: {My — 1}
Tr[2]: (2M1 — 1} Tr[6]: (M1 + My — 1}
Tr[3]: {2M — 1} Tr[7]: (Mo + 1, Mo + 1, My + 1, My — 1}

Tr[4]:{M1+1, M1 +1, M1 +1, Mg — 1}

(63)

We prune by removing duplicates and non-maximal expressions, and get

from Aq: {M1 +1,2M1 — 1, 2M2 — 1},

11 {M1 1 2—1 (64)

from Az: {M2 + 1, M1 + Mo — 1},

Step M3 (Combine Expressions and Compute RelationsMg). For eachd\; separately,
equate all possible combinations of two elements. Construct relations betwelgin Hye
solving for one M; .
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Example. Combining the gpressions ing§4), we get

Aq |A2
Mi4+1=2M1—1 [Mo+1=M1+Mp—-1

Mi+1=2My -1 (65)
2M; —1=2My -1

We mnstruct relations between tihd by soling for M1 (in this case):
Aq | A2
My =2 My =2
M1 =2My —2 (66)
M1 = M»

Step M4 (Combine Relations and Solve for Exponekty. By comhbning the lists of
expressions in an outer product like fashion, we generate all the possible linear equations
for M;. Soling thislinear system, we form a list of all the possible solutionsNor

Example. Combining theequations inA; and A,, we obtain
{M1 =2, M1 =2}, (M1 =2, M1 = Mg}, (M1 =2, M =2M; - 2}. (67)
Solving, we find

My =2 My =2
{Mz =2 {Mz = Free (68)
Step M5 (Discard Invalid Exponentsf;). The solutions are substituted into the un-
pruned list of exponents (iStep MJ. For every solution (without free exponents) we
test whether onot there is a highest-power balancevibetn at least two different tracking
variables. If not, the solution is rejected. Non-positive, fractional, and complex exponents
are discarded (after showing them to the user). Negative expofidnts — p;) and frac-
tional exponentéM; = p;/q;) indicate that a change of dependent variakilgs= G; ~ "
oruj = G; /%) should be attempted ir3}. Presently, such nonlinear transformations are
only carried out automatically for single equations.

Example. Removig the casgM; = 2, My = Freg from (68), we substitutefM; =
2, M2 = 2} into (63). Leading exponent (3 in this case) occurs Tar{2], Tr[3] and
Tr[4] in A1, and forTr [6] andTr [7] in Ay. The solution is accepted.

Step M6 (Fix UndderminedM; and Generate Additional Solutions). When some solu-
tions involve one or more arbitraryvl; we produce candidate solutions with a countdown
procedure and later reject invalid candidates.

Based on theutcome ofStep M5 scan for freedom in one or more &; by gathering
the highest-exponent expressions from the unpruned lisbtep M2 If the dominant
expressions are free of anyl;, a countdown mechanism generates valid integer values
for thoseM; . These vaues of M; must not exceed those computedStep M5 Candidate
solutions are tested (dmejected, if necessary) by the procedure giveBSiap M5
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Example. The dominant expressions frod3) with {M; = 2, My = 2} are

Aq | A

Tr[2]: (2M1 — 1} | Tz[6]: (M1 + My — 1}
Tr[3]: (2My — 1} | Tr[7]: {Mp + 1}
Tr[4]: (M1 + 1}

(69)

SubstitutingM; = 2, the highest exponent (3 in this case) matcheg#de] andTr [4]
in A1 whenM; < 2. The highest exponei, + 1) matches fofr [6] andTr [7] in A».
A countdown mechanism then generates the following list of candidates:

Mi=1 Mp=1 My =2 My =2 (70)
Mz =1 My =2 Mz =1 M2 = 2.
Verifying these candidate kdions, we are left with
My =2 My =2
{Mzzl {M2=2. (71)

Notice that for the new solutiofM1 = 2, M2 = 1} only the exponents corresponding to
Tr[2] andTr[4] in Az are equal.
Currently, for the mixed tanh—sech method, the code Bgts- 2 andN; = 1.

6.2. Algorithm to analyze and solve nonlinear algebraic systems

In this section, we detail our algorithm to analyze and solve nonlinear parameterized
algebraic systems (as generated in steg i@ main afjorithms). Our solver is custom
designed for systems that are (initially) polynomial in the primary unknot;$, the
secondary unknowng; ), andparametersm, «, 8, v, .. .).

The goal is to compute the coefficierdg in terms of thewavenumbersc; and the
parameterm, «, 8, etc. Inturn, the; must besolved in terms of these parameters. Possible
compatibility conditions for the parametersl@ions amongst them or specific values for
them) must kb alded to the solutions.

Algebraic systems are solved recursyestating with the simplest equation, and
continually back-substituting solutions. This process is repeated until the system is
completely solved.

To guidethe recursive process, we designed functions to: (i) factor, split, and simplify
the equations; (ii) sort the equations according to their complexity; (iii) solve the equations
for sorted unknowns; (iv) substitute solutiongarthe remaining equations; and (v) collect
the solution banches and constraints.

This strategy is similar to what one would do by hand. If there are numerous parameters
in the system or if it is of high degree, there is no guarantee that our solver will return a
suitable result, let alone a complete result.

Step R1 (Split and Simplify Each Equation). For all but the mixed tanh—sech algorithm,
we assume that the coefficiergiss;, of the highest power terms are nonzero and that

m, «t, B, €ic. are nonzero. For the mixed sech—tanh mettapg, = aj> andbjn, = by are
allowed b bezero.
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We first factor equations and set adisible facbrs equal to zero (after clearing possible
exponents). For examplég1¢3¢3 = 0} — {¢1 = 0,4 = 0,¢3 = 0}, whereg; is
a polynomial in primary and secondary unknowns along with the parameters. Equations
where non-zero expressions are set to zero are disgarded.

Example. Consider 84), which was derived in the search for sech-solutions2@j for
the caseM; = My = 2. Takingayo, azz, €1, C2, @, 8, to be norzero, splitting equations,
and removing non-zero factors leads to

aj2 — 405 = 0,

ap1 =0V (3a10¢1 + C5 + ¢2) = 0,
12821 + 2811802 — 2821C5 = 0,
3aagial — faziagy — O!allc% =0,
3aaf, — pag, — baarac; =0,

3
6ara10811C1 — 2BaxpaziCy + aay1C] — a11Cx =0,

(72)

3a11821C1 + 6210822C1 + 8822C3 + 2822C2 = O,
2 2
3aaficy + 6aaioarzCy — Bas C1 — 2Ba0azeCi + 4adnaC] — a1tz =0,
wherevV is the logtal or.

Step R2 (Sort Equations According to Complexity). A heuristic measure of complexity
is assigned to eaaf by computing a weighted sum of the degrees of nonlinearity in the
primary and secondary unknowns, parameters, and the lengithlohear and quasi-linear
equations (with products like 1a21) are of lower complexity than polynomial equations of
higher degree or non-polynomial equations. Solving the equation of the lowest complexity
first, forestalls branchig, avoids expression swell, and conserves memory.

Example. Sorting (72), we get
ajp — 4c2 = 0,
3wa11812 — Bap182 — dy1Cs = 0,
a12ap1 + 221182 — 282165 = 0,
ap1 =0V (381001 + ¢} + C2) = O,
3wa?, — fas, — 6aaracs =0,

3
6ara10811C1 — 2BaxpaziCy + aay1C] — ajiC =0,

(73)

3a11821C1 + 6210822C1 + 8822C3 + 2822C2 = O,
2 2
3aaficy + 6oaioarzCy — Bag C1 — 2Bag0azaCi + 4adnaC] — aaCs = 0.

Step R3 (Solve Equations for Ordered Unknowns). The ordering of unknowns is of
paramount importance. The unknowns from the first equation tep R2are ordered

so that the lowest exponent primary-unknowns precede the primary-unknowns that the
equation is not polynomial in. If there are not any primary-unknowns, the lowest
exponent secondary-unknowns precede th@sdary-unknowns that the equation is not
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polynomial in. Likewise, in the absence of primary- or secondary-unknowns, the lowest
exponent parameters precede tion-polynomial parameters.
The equation is solved using the builtNtathematicdunctionReduce, whichproduces
alist of solutions and constraints. Constraints of the far¢ b (where neithea or b is
zero) are pruned, and the remaining constraints and solutions are collected.

Example. In this exampleai2 — 4c? = 0 is soled forai» and the solutiory 2 = 4c? is
added to a list of solutions.

Step R4 (Recursively Solve the Entire System). The solutions and constraintsStem
R3are applied and added to the previously found solutions and constraints. In turn, all the
sdutions are then applied to the remaining equations. The updated system is simplified
by clearing common denominators in each dgueand continuing with the numerators.
Steps RER4 are then repeated on the simplified system.

Example. Substitutingaio = 4cf and clearing denominators, we obtain
Bagiazz — 1loayici =0
a1822 4 a21¢2 = 0,
ap1 =0V (3a10C1 + ¢} + C2) =0,
paz, — 24act = 0, (74)
6ara10a11C1 — 2B820821C1 + @1 1€ — a11C2 = 0,
3a11821C1 + 68108221 + 8aaC; + 282202 = O,
3wa?, — pad;, — 2Baz0drs + 24aarocs + 160t — 4cico = 0.

The recursive process terminates when the system is completely solved. The solutions
(including possible constraints) are returned.
RepeatingSteps RER4 seven more times thgdobal solution of 34) is obtained:

a10 = — (4¢3 4 ¢2)/(3c1), a11 = 0, &y = 4¢3,

(75)
220 = +(4aC] + (1+ 20)c2)/(1y/60p), Bp1 = 0, ap2 = F2¢7/60t/B
wherec, ¢, @ andpg are arbitrary.
This solution of 83), corresponds to thkl; = 2, M2 = 1 case given in5).
6.3. Algorithm to build and test solutions
The solutions to the algebraic system foun&grction 6.2are substituted into
M; ) N; )
ui () =Y ajFl&+vRF) Y bjFl), (76)
j=0 j=0

whereF andR(F) are defined irBection 6.1 The @nstraints on the parameters, («, 8,
etc.) are also collected and applied to syst8jn (

Since he algorithm used to solve the nonlinear algebraic system continually clears
denominators, it is important to test the final solutionafoiMhile Mathematica’®educe
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function generates constraints that should prevent any undetermined or infinite coefficients
ajj after back-substitution, it is still prudent to check the solutions.

To preent solutions in the simplest formave assume that all parametecs M, «, 8,
etc.) are positive, real numbers. This allows us to repeatedly apply rules sveifas «,

—a? — ia, /=B — i/Bandy/ —(c1 + C2)2 — i(C1 + C2).

We dlow for two flavors of testing: a numeric test for complicated solutions and a
symbolic test which guarantees the solution. In either test, we substitute the solutions into
(3) after casting the solutions into exponential form, i.e., tank (&€ —e %) /(& +e7%)
and sectf — 2/(& +e7%).

For thenumeric test obolutions:

e after substituting the solution, substitute random real numbdrs 1n1] for x;, ¢,
and A in the left-hand side of 8),

expand and factor the remaining expressions,
substitute random real numbers(ir1, 1] for arbitraryajj , bij, m, «, . . .,
expand and factor the remaining expressions,

if the absolute value of each of the expressieng ~ MachinePrecisiof2, then
accept the solution as valid, else reject thiigon (after showing it to the user).

Mathematicaevaluates/a2 — a whena is numeric, it does not evaluate’a2 — EY
whena is symbolic. Our simplification routines uséa? = a instead of|a] whena is
symbolic. This has two consequences: (i) valid solutions may be missed, and (ii) solutions
hawe a 1/2 probability of evaluating to matching signs during the numeric test. The numeric
test being inonclusive, we perform a symbolic test.

For the synhdlic test of solutions:

e after substituting the solution, expand and factor the left-hand sid® of (

e apply simplification rules like/a2 — a, v/—a? — ia, 1 — seclf £ — tanif &, and
sré(x; m) — 1 — cr(x; m),

e repeat the above sirifications until the expressions are static,

o if the final expressions are identically equal to zero, then accept the solution, else
reject the solution and report the unresolved expressions to the user.

7. Examples of solitary wave solutionsfor ODEs and PDEs

The algorithms fromSectbns 25 were implenented in ourMathematicapackage
PDESpecialSolutions.m, which was use to solve the guations in tls section.

7.1. The Zakharov—Kuznetsov KdV-type equations
The KdV-Zakharov-Kuznetsov (KdV—-ZK) equation,
Ut + aUUx + Uxxx + Uxyy 4+ Uxzz= 0, (77)

models ion-acoustic waves in magnetizeditirtcomponent plasmas including negative
ions (see e.ddas and Verheest989.
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With PDESpecialSolutions (Tanh and Sech options) we found the solution

8ey(cf + 5+ — s 12(cf+ 5+ ) ante

uix,y,zt) =
oC1 (78)
2 ~24 (2 2 24 2
_ _Aacite eyt N 1201+ 6+ o ;.
oCq o
whereé = c1xX + Yy + 32 + ¢4t + A, with ¢, ¢, €3, €4, A anda arbitrary.
Forc; = ¢3 = 0 and r@lacingc, by ¢, onegéds the solitary wave solution
8c3—c, 122
ux,t) = L2 _ -4 tantf(c1X + ot + A),
oC1 o
3 (79)
4c] + 2 12¢?
-1 —secr?(clx +Cot + A),
oCq

of the ubiquitous KdV equatiordg).

The functionPDESpecialSolutions does not take boundary or initial conditions
as input. One cam posterioriimpose conditions on solutions. For example, requiring
liM 100 U(X, t) = 0'in (79) would fix c; = —4c3.

For the nodified KdV—-ZK equationDas and Verheest 989,

ut + UUZUX + uXXX + quy+ quz= 0, (80)

using the Tanh and Sech optioRBESpecialSolutions returns

u(x,y, z,t) = =i \/G(cf + €5 + €3) /a tanhg, (81)

With £ = C1X + CY + €3z + 2¢1(C2 + ¢5 + C3)t + A, and

uex,y,zt) = ﬂ:\/ﬁ(cf + ¢2 + ¢2) /Jaseché, (82)

With & = C1X + CaY + Caz — C1(CZ + €5 + CA)t + A. Forcy = ¢z = 0, (81) and 82) reduce
to the well-known solitary wave solutions

u(x, t) = fic1y/6/a tanh(cix + 201t + A), (83)
u(x, t) = +c1/6/asechcix — clt + A) (84)

(c1, A andw arbitrary real numbers) of the modified KdV (mKdV) equatiédlowitz and
Clarkson 1991),

Ug -+ Uy + Uxxx = O. (85)
For a thee-dimensional modified KdV (3D-mKdV) equation,

Ut 4 6U2uy + Uxyz = 0, (86)
oneobtains the solitary wave solution

u(x, y, z, t) = +,/ccssechcix + cpy + €3z — c1Ccat + A), (87)
wherecy, ¢, ¢z and A are arbitrary.
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7.2. The generalized Kuramoto—Sivashinsky equation

Consider the gesralized Kuramoto—Sivashinsky (KS) equation (see Barkesand
Duffy, 1996

Ut + UUx + Uxx + otlxxx + Uxxxx = O. (88)

Ignoring complex solutions,PDESpecialSolutions (Tanh option) automatically
determines the special values of the real parametand the corresponding closed form
solutions. Forx = 4,

u(x,t) = 9+ 2c, + 15 tanhé — 15 tanf & + 15tani &, (89)

with € = F(1/2)x + Cot + A. Fora = (12//47),
45F 4418, 45

45 15
1) = tanhé — ———tantfé + —— tanP&, (90
VD= ar T ardar e T agar A E gy e (0)
whereg = +(1/2v/47)X + ot + A. Fora = (16/4/73),
2(30F 532%,) 75
1t - t h
. = S W, Rk
60 15
— " _tanlf&+ —— tanke, 91
7373 AME E g amtanTe (1)

wheret = +(1/2V/73)x + cot + A.

The remaining solutions produced BPESpecialSolutions are either complex (not
shown hee) or can be obtained from the solutions above via the inversion symmetry of
(88):u— —Uu, X —> —X,a = —a.

A separate run of the code after settiag= 0 in (88) yields

uex,t) = —2\/202 135\/7 165 aniP g, (92)

with & = (1/2)4/11/19 + ¢t + A. In all the solutons above:z is arbitrary.
7.3. Coupled KdV equations

In Section 3we gave the sechefutions for the Hirota—Satsuma systef?). Here we
list the tanh, cn and sn solutions f&22) conputed byPDESpecialSolutions (Tanh,
JacobiCN and JacobiSN options):

2c3—c
ux,t) = 1301 z_ 2c2 tantf(¢),

v(x, t) = j:\/[&xc‘l1 + 2(1+ 2x)cic]/ B tanh(é),
(93)

3 _
u(x,t>=8Cl 2 _ a2 tanif (&),

8ac3 — (14 20)c
V1) = + lCl«/W 2 + 2c2,/6a/ B tani (&),
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3_
GHMG %2 omdsiie; m),
3c1

v(x. 1) = +/[4am(d + mct + 2(1+ 20maicyl/ASnE. m).

ux, t) =

3_ (94)
uix,t) = w — 4mcfsnz(§; m),
3c1
41+ m)cd — (14 2a)c
v(x,t) =+ 01\1/67/3 2 £ 2¢2/6ar/ s (&5 m),
_ 3 _
uex,t) = @ 2mc; — ¢ + 2mcert(E; m),
3¢
v(x,t) = :l:\/[4am(2m — 1)011 —2(14 2a)mcicp]/Ben(E; my,
_ 3_ (95)
U 1) = 4(1—2m)cy —c2 +4m(,zlcn2(§; m).
3c1
4o (1 —2m)c — (1 + 20)c
v(X, 1) =+ cl\}GcTﬂ 2+ 2¢1/6a/Berf (&; m),

with &€ = c1x + ¢t + A4, andcy, ¢, «, B, 4, and modulusm arbitrary. These solutions
correspond with those given FFan and Hor{2002).

With the SechTanh option we abihed two dozen (real and complex) solutions. The
real solutions coincide ith the ones given above.

Another coupled system of KdV-type equations was studie@uiya-Roy(1987)

Ut + avvx + BUly + yUxxx = 0,

(96)
vt + 8(Uv)yx + evvky =0,

wherew throughe are real constants. The pack&®ESpecialSolutions (Sech option)
computed:

4€2y C3 + (4ad + €2)c, N 12¢2y¢2

ux,t) = — sechf(Cix + Cot + A),
2¢[48yc3 +A(§1— B)cal 243 iZ ®7
o(x.t) = SV e O}

whereé = cix + ot + A, A = 4as? + B2, with ¢g, ¢, A anda throughe arbitrary. For
€ = 0, (96) redices to Kawamoto’s system; fer= 0,8 = —2 to Ito’s system. Nither of
these systems has polynomial solutions in sech or tanh.

7.4. The Fisher and FitzZHugh—Nagumo equations
For the Fisler equationi{alfliet, 1992,
Ut — Uxx —u(l—u) =0, (98)

with PDESpecialSolutions (Tanh option) we found the (real) solution
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u(x,t) = 3 + tanhé + 1tanif &, (99)

with £ = £(1/2v/6)x & (5/12)t + A. In addtion, there ardour complex solutions.
Obviously,PDESpecialSolutions handles ODEs also. For example, we can put the
FitzHugh—Nagumo (FHN) equatioéreman1990),

Ut — Uxx + U(l —u)(e —u) =0, (200)
where—1 < a < 1,into a travelling frame,
Bz + V202, — V20 (1 — V2v) (@ — v/2v) = 0, (101)

with v(z) = v(x — (8/~/2)t) = V2u(x, t). Ignoring the inversion symmety — —z,
B — —p of (101), we find with PDESpecialSolutions (Tanh option)

1 V2
v(2) = 2—\/5 |:,8 + (B -2 tanh|:7(2— B)z+ AH , (102)
ifa=p8-1;
_(B+2 V2
v(2) = >3 [1— tanh|:7(,8 +2)z+ AH , (103)
if« =8 +2;and
1 V2

if « = (1/2)(8 + 1). In thesesolutions(see e.gHereman1990 B and A are arbitrary.
7.5. A degenerate Hamiltonian system

Gao and Tiar{2001) considered the following degenerate Hamiltonian system,

U — Ux — 2v =0,

(105)
vy — 2¢uv =0, € = =+1,

which was shown to be completely integrable by admitting infinitely many conserved
dengdties. Our code does not find sech-solutions. With the SechTanh option,
PDESpecialSolutions returns thesolutions:

u(x,t) = —ecptanhg,

106
(X, 1) = Jeco(cr — co)sectt &, (106)
which oould have been obtained with the tanh-metho8égtion 2 and
u(x,t) = dicoe(seché + i tanhg),
(X, 1) = 5ic2e( S 5) (107)

(X, t) = 1ca(cr — cp)esechi(seché +i tanhg),

plus their two complex conjugates. There are no constraints; pop, ande, andé =
C1X + cot + A. The alwve soldions were reported iGao and Tiar{2007).
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7.6. The combined KdV—-mKdV equation
The combined KdV—-mKdV equation (s&ao and Tian2001])
Ut + 6aUly + 68UUy + yUxxx = O, (108)

describes a variety of wave phenomena in plasma, solid state, and quantum physics. We
chose this example to show that ODEs of typ@(which are free of/1 — S, can admit
mixed tanh—sech solutions.

First,PDESpecialSolutions with the Tanhoption, produces

o .Y C1 2 2
ux,t) = —— :l:l\/jcltanh<clx + —Q@a“+48ycHt + A) . (109)
286 VB 28 '
Next, with the Sech optiorPDESpecialSolutions computes
o Y Cl 2 2
ux,t) =—— =+ —clsech[clx + —= B — 28ycpt + A} . (110)
2867V B 28 '
Third, with the SechTanh optioRDESpecialSolutions finds
1
uix,t) = —% + 5\/%01(3%?15 +i tanhg), (112)
and
1
ux, t) = —% _ E\/%cl(seché —itanhg), (112)

whereg = cix + (1/2)(c1/B)(3e? + BycHt + A. In all sdutionscy, A, «, g andy are
arbitrary. The solutions were reported@ao and Tiar{2001), although there were minor
misprints.

7.7. The Duffing equation
Duffing’s equationltawden 1989,
u 4+ u+aud=0, (113)

models a nonlinear spring problem. Its cn and sn solutions

ux) ==+ 2m cn( X + A m) +1
= ; ) € = )
(1-2m)«x V1—2m
ux) ==+ —2m sn( X + A m) +1
= ; ) € = )
A+ M J14+m

are computed byDESpecialSolutions with the JacobiCN andatobiSN options. There
are four sign combinations ii{4). Since 0< m < 1, the cn solution is real when > 0
andm < 1/2. The sn solution is real fax < 0. Such conditions are not automatically
generated. During simplifications the code assumes0 (seeSection 6.Zor details).

(114)
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Initial conditions fix the modulus inl(14). For exampley(0) = a andu(0) = 0O lead to
u(x) = acn(v'1+ aa2x; (ea?)/(2 + 2xa?)).
7.8. A class of fifth-order PDEs with three parameters

To illustrate the limitations oPDESpecialSolutions consider the family of fifth-
order KdV equationsGoktasand Heremail997),

Ut + OIUZUX + BUxUxx + ¥ UUxxx + Uxxxxx= 0, (115)

wherew, 8, andy are nonzero parameters.
An investigation of the scaling properties dfl) reveals that only the ratios/y 2 and
B/y are important, but let us proceed withl).

7.8.1. Special cases
Several special cases dfl(5) are wellknown (for references s&&bktasand Hereman
1997. Indeed, forw = 30,8 = 20,y = 10, Eq. 15 redwces to

ut + 3m2Ux + 20uyUxx + 10UUxxx + Uxxxxx= O, (116)

which belongs to the completely integrable rdechy of higher-order KdV equations
constructed by Lax. Eq1(6) has two &nh-solutions:

u(x, t) = 4c? — 6¢2 tantf(cyx — 56C5t + A), (117)
and
u(x, t) = ago — 2¢2 tantf[cix — 2(15a2,c1 — 40a10C5 + 28c)t + A, (118)

whereayp, €1, A are arbitrary.
Fora = B = y = 5, one obtains the equation,

Ut + 502Uy 4 BUxUxx 4 5UUxxx + Uxxxxx = O, (119)
due to Sawada and Kotera (SK) and Dodd and Gibbon, which has tanh-solutions

u(x, t) = 8¢ — 12c? tanif(cix — 16¢3t + A), (120)
and

u(x, t) = a1o — 6¢2 tantf[cix — (5a3,c1 — 40a10CS 4 76t 4 A], (121)

whereay, €1, A are arbitrary.
The KK equation due to Kaup and Kupershmidt,

Ut + 20u?Uy + 25UxUxx + 10UUxxx + Uxxxxx = O, (122)
corresponding tae = 20,8 = 25,y = 10, and again adits two tanh-solutions:

u(x, t) = ¢f — 3cftantf(cax — cit + A), (123)
and

u(x, t) = 8c2 — 12c? tantf(cix — 17603t + A), (124)

with ¢, A arbitrary, but no additional arbitrary coefficients.
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The equation
Ut 4 2u%Uy 4 BUxUxx + 3Ulxxx + Uxxxxx= 0, (125)
fora = 2,8 = 6,y = 3, was studied by Ito. It has one tanh solution:
u(x, t) = 20c? — 30c? tankf(c1x — 96c5t + A), (126)

again withcy and A arbitrary.PDESpecialSolutions (Tanh option) produces all these
solutions.

7.8.2. General case

Eq. (115 is hard to analyze by hand or using a computer. After a considerable amount
of time, PDESpecialSolutions (Tanh option) produced the solutions given below (but
not in as nice a form). Our write-up of the solutions is the result of additional interactive
work with Mathematica

The coefficients g, a11, andazz in

u(x,t) = ajo + a1 tanh€) + agptantf (), (127)

with & = c1x + c2 + A, must séisfy the following nonlinear algebraic system with
parametersy, C, «, 8, andy:

aaZ, 4+ 6Ba12c? + 12yaroc? 4 360c = 0,
av1(al, + 2Ba1aCy + 6yaracs + 24c) =
a11((xa1001 — Zyal()Cl + 2,8a1201 + 16C1 +cp) =0,

a11(aa11 + 6aazoale + 6yalocl — 12,3&1201 — 18ya1201 120ct 1D =

(128)
20aZ a1 + 2081082, + fadcs + 3yaZ c? + 12yajga1oc?
—8Ba2,c? — 8yaZ,c? — 480ajCt =0,
@a1082,C1 4 aadyanaC1 — Baz s — yaZ,cd — 8yajearoCs 4 28a2,c3
+ 1366120§ + azocr = 0.
Assumingnonzeraas 2, C1, C2, @, B, andy, two cases must be distinguished:
Casel. a1 = 0. In turn, this case splits into two sub-cases:
Casela.
a;1 =0, a1z = —3ayo, C2 = C3(24¢2 — Bayo), (129)
whereajg must be one of the roots of
aaZy — 4Baioc? — 8yajoc? + 160c = 0. (130)
Caselb.
6
ay1 =0, ap = ——ny,
o (131)

1
C2 = _E(O‘Zafocl — Bayauel] + 16cy + 12/°¢)),
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provided that
1
B ==(100 — y?). (132)
Y
Case2.aj;1 # 0. Then
1 168
= —(88%+38 39,2 =———¢? 133
o 392( B+ 388y + 39°), arz 2/3+3ycl’ (133)

providedg is one of the roots of

(10482 + 8868y + 14872)(5208° + 215832y — 11038y2 — 8871y%) = 0.(134)
Thus, case 2 also splits into two sub-cases:
Case2a. If % = —(1/104)(8868y + 1487/2), then

52(43788 + 998%) ,
7y(9588 +2213/) ¥

1
:——2 5 s aln = —
o g\ 28 o)y 10

336 168
— , - 135
ail 2’3+3y01 a2 2,8+3yc1 ( )
_ 3641634 + 3851) o
29468 + 6715,  *
whereg is any 0ot of 10482 + 8868y + 14872 = 0.
Case2b. If g2 = (1/520)(11038y2 + 88712 — 215832y), then
_ 1 2 2
o = 255(86°+ 388y +3%9),
. 28(106682 + 5529y + 6483/2) 2
10 = 1>
2B + 3y)(6B + 23y)(268 + 81
(28 +3y)(68 ) (260 Y) (136)

) 28224266 —17y)4B—7) 4 168
Cq, a2 =

af; = Y I WAE

1728 +3y)2(68 + 23y) (268 + 81y) 28+3y *
8(188900 1142+ 1161063888y + 17922619772 e
105176 782 + 632954968y + 9598334732

whereg is any oot of 52083 + 21583y — 11038y? — 88713 = 0.

Co =

8. Other algorithmsand related software
8.1. Other perspectives and potential generalizations

The algorithms presented in this article can be extended in several ways. For instance,
one could modify the chain rule itep T1(S1, T1, or CN1) to conpute othertypesof
sdutions or consider more complicated polynomials than those us8tem T2(S2, T2,
or CN2). Both options could be used together.

With respect to the first option, it suffices to know the underlying first-order
differential equation of the desired fundamental function in the polynomial solution.
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Table 2
Functions with corresponding ODEs and chain rufeéx; go, g3) is the Weierstrass function with invariards
andgs

Function Symbol ODEY = dy/d¢) Chain rule

tanh() T y =1-y? ;T-j=c,-<142>?ﬁ

sech() s y =-y/1-y? B =G SV1- Sy

tan(é) TAN y=1+y? ;’Tj =cj(1+ TAN?) g

expié) E y =y B = CiEGE

cn(g:; my CN Y = /1=y L -m+my) BBTJ = —Cj\/(l—CNZ)(l—m-i- mCNz)a%LN
siesm) SNy =/aA-y)a-mp) B = ¢ /T= SN - mSNP) ey
P03 P Yy =+/4y3 — gy — 03 B = £ 4% - ooy — 03

Table 2summarizes soe of the more obvious choicese\#ial researchers, includirfgan
(2002ab,c) andGao and Tiar{2001), seek solutions of the form

M;
UG =Ui) =) ajuw@’, &=cx+ct+A, (137)
j=1
wherew(§) is constrained by a Riccati equation,
w' () = b+ ew? (&), € = +1, b real constant (138)
Ignoring rational solutions 138) has the flowing solutions:
w(£) = atanh@ag + c), if e =—1, b=a?
= acoth@a¢ + c), ife=—1, b= a2
w(§) ha& +c) _ ) (139)
w(§) = atan(@ + c), ife=1 b=a“,
w(£) = acot(ag + ), ife=—1, b= —a2%

So, (L37) is polynomial in tant, tang, cothé, or coté. The irtegration constant gets
absorbed inA, and the onstanta (or b) is an extrgparameter in the nonlinear algebraic
system for theajj. For shgle PDEs,Yao and Li(20023b) consider solutions of the
form

M M
ue, ) =U@E) =Y ajw@)! + ) bjz@wE) (140)

j=0 j=0
wherew(¢) andz(¢) saisfy the Riccati equations
w'(§) = —w®z2E),  ZE) =1-2%). (141)

Sincew(§) = sech§), z(¢§) = tanh&) this approach is similar to the sech—tanh method
given inSection 4
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Generalizing furthetf-an(2002h 2003ab,c), Fan and Hor{2002 20033 andHon and
Fan(2004H take

y'(€) = \/bo + b1y + boy? + bgy3 + bay4, bi constant (142)

which covers the functions seckec, tanh, tan, cn, sn, arfdl The parameterd; are
added to the nonlinear algebraic system, which makes such systems hard to solve without
human intervention. Most often, such congplied nonlinear algebraic systems are solved
interactively with the aid oMMathematicaor Maple To avoid unmanageable systems,
M; (<2) is often fixed in (37). Chenand Zhang2003a submitted for publicatiojy Fan
and Dai(2003 andSirendaoreji(2003 2004 use variants of{42) to compute polynomial
and rational solutions in terms of tanh, sech, tan, Jacobi’s elliptic functions, etc.

Zheng et al(2002 introduce a clever method to compute mixed tanh—sech solutions
for the combined KdV-Burgers equations. They seek formal solutions,

M M
ux,t) =U(¢E) =ag+ Z bj sin} w(é) + Z aj cosw(§) sinw(é)j‘l, (143)
j=1 j=1
subject to dv/dé = sinw(£) which, upon integration, gives sin(¢) = sech&) and
cosw(§) = *tanh&). Alternatively, one can useug/dé = cosw(£), which leads to
cosw(&) = —seché) and sinw(§) = £ tanhé).
Liu and Li (20023 seek solutions of the forms

M M M
UE =) asne)l,  UE =) ajsné)! +) bjen@)sne)
j=0

j=0 j=0

M M M
U@ =Y ajsn@) + > Ajen@)sn@)) t+ > bjdnE)sne) - (144)

j=0 j=0 j=0

M
+ ) Bjen)dn(&)sn) 72,
j=0
which generalize the Jacobi elliptic function methodiection 4
With respect to the second optidBao and Tiar{2001) consider
M;
ui(x.t) =Y aj (X, t)ytanh w(x,t)
j=0
N
+ ) bij (x, tysech ¥ (x, 1) tanh w(x,t), (145)
j=0
where ¥ (x, t) is not necessarily linear inand/ort. Of course, (45) arises from recasting
the terms in 89) in a slighly different way than 40). Restricted to travelling waves,
U(X,t) = c1x + cot + A, both forms are equivalent.
Our algorithms could be generalized in many ways. With considerable effort, solutions
involving complex exponentia multiplied by tanh or sech functions could be attempted.
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A solution to the nonlinear Schdinger equation is of this fornfran and Hor§20038, Hon
and Fan(20043 andFan (2003hc) give examples of amplex as well as transcendental
equations solved with the tanh-method.

8.2. Review of symbolic algorithms and software

There is a variety of methods to find sotifawave solutions and soliton solutions
of special nonlinear PDEs. See elereman ad Takaoka1990, Es®vez and Gordoa
(1995 1998 andHelal (2002. Some of these methods are straightforward to implement
in computeralgebra systems (CAS).

The most comprehensive methods of finding exact solutions for ODEs and PDEs are
based on similarity reductions via Lie point symmetry methods. These methods are hard to
fully automate (for publications and software see Egntwell 2002 Hereman1996and
Hydon, 2000. Most CAS have tools to solve a subset of linear and nonlinear PDEs. For
exanple,Mathematica’®Solve can find general solutionsftinear and weakly nonlinear
PDEs. Available withinMuPAD, the codepdesolve uses the method of characteristics
to solve quasi-linear first-order PDBglaple offers the packages ODEtools (for solving
ODEs wsing classification, integrating factor and symmetry methods) and PDEtools, which
contains the functiorpdesolveto find exact solutions of some classes of PDEs. For
information consulCheb-Errab and von Blow (1995 andCheb-Errab(20017).

The methods presented in this paper are different from these efforts. Our algorithms and
software only compute specific solutions of nonlinear PDEs which model travelling waves
in terms of the tanh, sechn &ind cn finctions. Our code can handle systems of ODEs and
PDEs with undetermined parameters.

To our knowledge, only four software packages are similar to ours. The first package is
ATFM by Parkesand Duffy(1996), who automated to some degree the tanh-method using
Mathematicaln contrast to ATFM, our software performs the computations automatically
from start to finish without human intervention. In our code, the number of independent
variables; is not limited to one space variabteand timet; our code handles any number
of dependent variables.

The second package is RATH hyand Liu (2002, which automates the tanh-method.

In contrast to our code, RATH only works for single PDEs. Extensions to cover systems
of PDEs and sech solutions are under development. Surpassing our code, RATH can solve
PDEs with an unspecified degree of nonlingaand deal with negative and fractional
exponents.

Table 3 compares the performance BDESpecialSolutions.m and RATH. The
sdution times are comparable, yet occasibnshere is a mismatch in the number of
sdutions computed. This is due in part to thepresentation of solutions. Occasionally
special solutions are generated although—after inspection by hand—they are included in
more general solutions.

Liu and Li (20023 present theMaple code AJFM to automate the Jacobi elliptic
function method for single PDEs. This package seeks solutions of the a4 (

The codes RATH and AJFM use the Ritt—Wuathcteristic sets method, implemented
by Wang (2001ab). The CharSets package, available in Mapl¢afg 2002, is more
versatile and powerful than our algorithm Bection 6.2
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Table 3

Comparison between codes PDESpecialSolutions.m and RATH. Test runs performed on a Dell Dimension
8200 PC, with 2.40 GHz Pentium 4 processor, 512 MB of RAM, with Mathematica v. 4.1 and Maple v. 7.0.
The first 8equations appear in and Liu (2002); the last 10 equations elisted in this paper

PDEScialSolutions.m RATH
Name of equation CPtime (s) # Dls. CPU time $§) # Sols. Ref.
KdV-Burgers 0.125 2 0.328 1 (2.3)
KdV-Burgers—Kuramoto 0.390 8 25.641 7 4.1)
7th-order dispersive - 0 6.265 2 4.7)
5th-order mKdV (lto) 0.438 4 1.000 4 (4.11)
7th-order mKdV (lto) 10.469 4 5.531 4 (4.13)
Generalized Fisher 0.406 4 0.469 2 (5.1)
Nonlinear heat conduction - 0 0.485 2 (5.3)
Gen. combined KdV-mKdV - 0 2.062 2 (5.5)
Boussinesq 0.218 1 0.142 1 4)(
Kdv 0.125 1 0.126 1 48)
KdV-Zakharov—Kuznetsov 0.469 1 0.142 1 78(
mKdV-Zakharov-Kuznetsov 0.282 2 0.642 4 81)
3D-mKdV 0.078 2 1.874 2 q7)
Gen. Kuramoto-Sivashinsky 0.734 16 1.453 8 89)(
Fisher 0.234 8 0.343 4 90
FitzHugh—Nagumo 0.719 12 - 0 1QD
Combined KdV-mKdV 0.204 2 0.251 2 109
Duffing 0.094 4 - 0 1149

Finally, Abbott et al.(2002 desgned aMathematicanotebook with key functions for
the computation of polynomial solutions in sn and cn.

There are several symbolic tools for reducing and solving parameterized nonlinear
algebraic systems. Some are part of codes to simplify overdetermined ODE and PDE
systems. For exampléhe Magle packagerif by Wittkopf and Reid (2003 allows
for the computation of solution branches of nonlinear algebraic systems. The most
powerful algebraisolvers use some flavor of the @amier basis algorithm. For up-to-date
information on developments in this area we refeGrabmeier et al2003.

9. Discussion and conclusions

We preented several straightforward alggbhms to compute special solutions of
nonlinear PDEs, without using explicit integration. We designed the symbolic package
PDESpecialSolutions.m to find solitary wave solutionsf nonlinear PDEs involving
tanh, sechcn and sndinctions.

While the software reproduces the knowmdaalso a few presumably new) solutions
for many equations, there is no guarantee that the code will compute the complete solution
séa of all polynomial solutions involving the tanh and/or sech functions, especially when
the PDEs have parameters. This is due tarie®ins on the form of the solutions and the
limitations of the algebraic solver.
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There is so much freedom in mixed tanh—sech solutions that the current code is limited
to quadratic solutions.

Furthemore, the nonlinear constraints which arise in solving the nonlinear algebraic
system may be quintior of higher degree, and therefore unsolvable in analytic form.
Also, since our software package is fully automated, it may not return the solutions in the
simplest form.

The example inSection 7.8illustrates this situation. By not solving quadratic or
cubic equations explicitly the solutions (computed interactively Widithematica can
be presented in a morempact and readable form.

In an attempta avoidthe explicit use oMathematic& Solve andReduce functions,
we considered various alternativesriexample, we used (i) variants of énier bases on
the complete system, and (ii) combinatorics on the coefficients in the polynomial solutions
(settingajj = 0 ora;j # 0O, for the admissible and j). None of these alternatives paid off
for systemawith parameters.

Often, the nonlinear solver returns constraints on the wave paranmgtemsd the
external parameters. In principle, one should verify whether or not such constraints affect
the results of the previous steps in the algorithm. In particular, one should verify the
consistency with the results from step 2 of the algorithms. We have not yet implemented
this type of sophistication.
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Appendix. Using the software package

We illustrate the use of the packaBBESpecialSolutions.mon a PC. Users should
have access thlathematicav. 3.0 or higher.
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Put the package in a directory,ysayDirectory, on drive C. Start Mathematica
notebook session and execute the commands:

In[1] = SetDirectory["c:\\myDirectory"]; (* specify directory *)

In[2]

<<PDESpecialSolutions.m (* read in package  *)

In[3]

PDESpecialSolutions[
{D[ulx,t],t]l-alpha*(6*ulx,t]*D[ulx,t],x]J+D[ulx,t],{x,3}]1)+
2xbeta*v[x,t]*D[v[x,t],x] == 0,
D[v[x,t],t]1+3*ulx,t]*D[v[x,t],x]1+D[v[x,t],{x,3}] == 0},
{ulx,t],v[x,t]}, {x,t}, {alpha, beta}, Form -> Sech,
Verbose -> True, InputForm -> False, NumericTest -> True,
SymbolicTest -> True, SolveAlgebraicSystem -> True
(*, DegreeOfThePolynomial -> {m[1] -> 2, m[2] -> 1} *)];

The package will compute the sech solutiods)(and @8) of the coupled KdV
equation 22).

If the Degree0fThePolynomial — {M[1] — 2, m[2] — 1} were specifid, the code
would continue with this case only and compu&)(

If SolveAlgebraicSystem — False, the abebraic system will be generated but not
automatically solved.

The format ofPDESpecialSolutions is similar to theMathematicdunction DSolve.
The output is a list of -lists with solutions and constraints. The Backus—Naur form of the
function is

(Main Function — PDESpecialSolutions[{Equations, (Functions,
(Variables, (Parameers), (Options]
(Optiong — Form— (Form) | Verbose— (Bool) |

InputForm— (Bool |
Degree0fThePolynomial — (List of Rule$ |
SolveAlgebraicSystem— (Bool |
NumericTest — (Bool) | SymbolicTest — (Bool)

(Form) — Tanh | Sech | SechTanh | JacobiCN | JacobiSN

(Bool) — True | False

(Listof Rule$ — {m[1] —Integer,m[2] — Integer,...}

The default value oform is Tanh. The packagePDESpecialSolutions.m has been
tested orboth UNIX work stations and PCs witdathematicaversons 3.0, 4.0 and 4.1.
A test £t of over 50 PDEs and half a dozen ODEs was used.
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